Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biosaf Health ; 4(1): 11-14, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1588182

ABSTRACT

The novel betacoronavirus (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2) is a pathogen that causes deadly respiratory disease named coronavirus disease 2019 (COVID-19). The incidence of this disease has increased in the last few months affecting 257,832,881 people in 221 countries and 51,68,069 deaths worldwide according to Worldometer at 04:03 GMT on November 22, 2021. Thus, the emergence of this disease creates a challenge for health care providers in handling this pathogen and reducing its risk of transmission. In developing countries, this virus is treated in biosafety level 2 laboratories, where a high concentration of pathogen can easily affect the laboratory staff and cause the spread of this disease. Based on the epidemiology and characteristics of the SARS-CoV-2 virus already discussed in recent studies, we will provide biosafety guidelines and suggestions for safe handling and transportation of the SARS-CoV-2 virus in dealing with the current pandemic situation with a focus on increased infectivity of emerging new variants.

2.
Cytometry A ; 99(1): 81-89, 2021 01.
Article in English | MEDLINE | ID: covidwho-1086343

ABSTRACT

The COVID-19 pandemic has brought biosafety to the forefront of many life sciences. The outbreak has compelled research institutions to re-evaluate biosafety practices and potential at-risk areas within research laboratories and more specifically within Shared Resource Laboratories (SRLs). In flow cytometry facilities, biological safety assessment encompasses known hazards based on the biological sample and associated risk group, as well as potential or unknown hazards, such as aerosol generation and instrument "failure modes." Cell sorting procedures undergo clearly defined biological safety assessments and adhere to well-established biosafety guidelines that help to protect SRL staff and users against aerosol exposure. Conversely, benchtop analyzers are considered low risk due to their low sample pressure and enclosed fluidic systems, although there is little empirical evidence to support this assumption of low risk. To investigate this, we evaluated several regions on analyzers using the Cyclex-d microsphere assay, a recently established method for cell sorter aerosol containment testing. We found that aerosol and/or droplet hazards were detected on all benchtop analyzers predominantly during operation in "failure modes." These results indicate that benchtop analytical cytometers present a more complicated set of risks than are commonly appreciated.


Subject(s)
COVID-19/prevention & control , Cell Separation/instrumentation , Containment of Biohazards , Equipment Contamination/prevention & control , Flow Cytometry/instrumentation , Laboratory Personnel , Occupational Exposure/adverse effects , Occupational Health , Aerosols , COVID-19/transmission , Humans , Risk Assessment , Risk Factors
3.
Cytometry A ; 99(1): 68-80, 2021 01.
Article in English | MEDLINE | ID: covidwho-1086342

ABSTRACT

Biosafety has always been an important aspect of daily work in any research institution, particularly for cytometry Shared Resources Laboratories (SRLs). SRLs are common-use spaces that facilitate the sharing of knowledge, expertise, and ideas. This sharing inescapably involves contact and interaction of all those within this working environment on a daily basis. The current pandemic caused by SARS-CoV-2 has prompted the re-evaluation of many policies governing the operations of SRLs. Here we identify and review the unique challenges SRLs face in maintaining biosafety standards, highlighting the potential risks associated with not only cytometry instrumentation and samples, but also the people working with them. We propose possible solutions to safety issues raised by the COVID-19 pandemic and provide tools for facilities to adapt to evolving guidelines and future challenges.


Subject(s)
COVID-19/epidemiology , Containment of Biohazards/trends , Laboratories/trends , COVID-19/prevention & control , COVID-19/transmission , Containment of Biohazards/standards , Flow Cytometry , Humans , Laboratories/standards , Risk Assessment/standards , Risk Assessment/trends
4.
Cancer Cytopathol ; 128(5): 317-320, 2020 May.
Article in English | MEDLINE | ID: covidwho-38690

ABSTRACT

The 2019 coronavirus pandemic, which started in Wuhan, China, spread around the globe with dramatic and lethal effects. From the initial Chinese epicenter, the European diaspora taxed the resources of several countries and especially those of Italy, which was forced into a complete social and economic shutdown. Infection by droplets contaminating hands and surfaces represents the main vehicle of diffusion of the virus. The common and strong efforts to contain the pandemic have relevant effects on the management of samples from histopathology laboratories. The current commentary reports and focuses on the protocols and guidelines in use at a large tertiary Italian hospital that accordingly are proposed for adoption in Italian laboratories as a potential model for national guidelines for the coronavirus emergency.


Subject(s)
Containment of Biohazards/methods , Coronavirus Infections/pathology , Cytological Techniques/methods , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Pneumonia, Viral/pathology , COVID-19 , Containment of Biohazards/standards , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cytological Techniques/standards , Humans , Infection Control/methods , Infection Control/standards , Italy , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology
SELECTION OF CITATIONS
SEARCH DETAIL